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1. Introduction and results

A new significant step was taken recently [1] towards the computation of planar N = 4

Super-Yang-Mills (SYM) n-point amplitudes beyond ordinary perturbation theory, using

the gauge/string correspondence. The celebrated exponentiation BDS-hypothesis of [2]

was verified at strong coupling for the four point amplitude. To achieve this, the authors

made several ingenious choices and educated guesses in order to deal with the difficul-

ties in the string side of the AdS/CFT duality [3, 4], studied also in a number of recent

publications [5]–[16].

In particular, in [1]

(i) the σ-model action instead of the Nambu-Goto one was used, what allowed to perform

a T -duality a la [17],

(ii) a minimal surface was constructed for n = 4 based on previous considerations [18],

(iii) a rather unusual dimensional regularization was employed, instead of, for instance,

the one described in [19],

(iv) a skilful handling of the resulting integrals was required, and finally

(v) the KLOV interpolation [20] between weak and strong coupling regimes was used.

A better understanding of these and related issues seems to be an unavoidable step,

before one can generalize this method and derive the dilogarithmic BDS formula [2] for

n > 4. Before we describe the little progress made in the present paper, let us briefly

summarize the basic ingredients of the AdS/CFT correspondence.

1.1 Gauge theory side

Start with the N = 4 SYM.

(a) According to the conjecture of [2], the planar (at least, maximally helicity violating)

n-point amplitude An in N = 4 SYM gauge theory has the form

An = An,tree ×Mn (1.1)
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where Mn does not depend on any color and helicity factors. In the supersymmetric

case, the leading logarithm approximation (LLA) [21] is not required for the ampli-

tudes to exponentiate: both the infrared divergent and the finite parts of amplitudes

are surprisingly simple exponentials. Explicitly, its infrared divergent part is the

universal exponential

MIR ∼ exp

(

−1

4

∞
∑

l=1

λl
[

γ(l) + 2lǫg(l)
]

I(1)
n (lǫ)

)

(1.2)

with the 1-loop scalar box integral

I(1)
n (ǫ) =

1

ǫ2

n
∑

i=1

(

µ2

si,i+1

)ǫ

(1.3)

si,i+1 is the square of the sum of the i and i + 1 external momenta and the function

γ(λ) ≡ ∑

l γ(l)λ
l of the ’t Hooft coupling λ ≡ NcαS

2π

(

4πeΓ′(1)
)ǫ

is called soft or cusp

(Wilson line [22, 23]) anomalous dimension [24]. µ and ǫ are the standard dimensional

regularization parameters.

(b) The finite part of Mn is also expressed through its 1-loop counterpart F
(1)
n as:

Fn = exp

(

1

4
γ(λ)F (1)

n + C(λ)

)

(1.4)

where C(λ) depends neither on n, nor on kinematics. If this is true, then the main

non-trivial quantity entering both (1.2) and (1.4) is γ(λ), the anomalous dimension

of twist-two operators, an eigenvalue of a not yet fully known Bethe ansatz [25], but

with known strong ’t Hooft coupling asymptotics γ(λ) ∼
√

λ+const+O(1/
√

λ), [26,

18, 27, 28].

(c) The 1-loop amplitude F
(1)
n may be expressed as a sum over 4-clusters in an auxiliary

polygon Π, figures 4), (2, formed by the external momenta pa of the process at hand,

which plays the central role in the description of both sides of the AdS/CFT duality.

In section 2.2 one may find a simple pictorial representation of the BDS formula for

F
(1)
n .

Furthermore, in N = 4 SYM F
(1)
n is given to leading order [29, 30] as a sum of

contributions F 2me from ”2-mass easy” (2me) square diagrams [31], i.e. square dia-

grams with two external legs at opposite corners on-shell and the other two off-shell,

figure 3. Formally,

F (1)
n =

∑

a<b

F 2me(pa,Pab,pb,Pba) (1.5)

Here pa are the n external momenta1 and Pab =
∑b−1

c=a+1 pc, where we assume that

pa+n ≡ pa. The two lower case arguments pa of F 2me are on-shell (p2
a = 0), while

the other two are in general off-shell.

1Throughout the paper, we use the bold font for 4d vectors, while arrows are used for 2d vectors.
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Figure 1: A formal polygon Π formed by the external momenta pa (one can call it a Wilson loop

in the dual momentum space). It plays a surprisingly important role in the description of both

perturbative and strong coupling sides of gauge/string duality.
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Figure 2: The 4-cluster formed by two non-intersecting edges of the polygon Π, it also contains

four vertices (hence the name) and four diagonals. (”Diagonals” are those of Π, two of the four are

actually sides of the quadrilateral.) From these four diagonals one is ”long”, another ”short” and

two ”medium” — associated respectively with P2, Q2 (or vice versa), s and t. ”Long” and ”short”

refer to the smallest number of edges of Π in between the ends of diagonal. The contribution

of the 4 cluster to the dilogarithmic part of the BDS formula (2.2) is 1
2Li2

(

1 − P2Q2

st

)

where

log P2Q2

st
= τl + τs − τm1 − τm2. Dilogarithmic contribution does not distinguish long and short

diagonals. The logarithmic one does, see figure 5.

Each F 2me(p,P,q,Q) can be expressed through dilogarithmic functions of four in-

variant scalars s = (p + P)2, t = (p + Q)2, P2, Q2. A particularly interesting
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Figure 3: Ordinary box Feynman diagrams for a massless scalar field in 4 + 2ǫ dimensions with

four external momenta. Two external momenta are on-shell, two are off-shell: p2 = q2 = 0, P2 6= 0,

Q2 6= 0. In ”easy” (or 2-mass easy) box (A) off-shell momenta are at opposite corners, in ”heavy”

box (B) they are adjacent. Only ”easy” boxes contribute to F
(1)
n in (1.5).

dilogarithimic representation is [32]:

F 2me(p,P,q,Q) ∼ 1

ǫ2(−s)ǫ
+

1

ǫ2(−t)ǫ
+

1

ǫ2(−P2)ǫ
+

1

ǫ2(−Q2)ǫ
+ (1.6)

+Li2(1 − as) + Li2(1 − at) − Li2(1 − aP2) − Li2(1 − aQ2)(1.7)

with

a =
s + t − P2 − Q2

st − P2Q2
. (1.8)

(d) As shown recently in [9], the above sum of dilogarithms is actually a double contour

integral (the leading contribution to the Wilson-loop average [22]), only in T -dual

coordinates in the target space along a polygon, formed by the external momenta pa

of the scattering process:

F (1)
n =

∮

Π

∮

Π

dyµdy′µ
(y − y′)2+ǫ

(1.9)

Equation (1.9) constitutes a purely geometric formulation of the BDS formula for

F
(1)
n . Together with a Bethe-ansatz description [25] of the function γ(λ) it should

provide a particularly satisfactory solution of planar N = 4 SYM.

1.2 String theory side

The situation on the String Theory side of the AdS/CFT correspondence looks at the

moment less optimistic. Let us briefly review the current understanding.

(e) According to the AdS/CFT duality [3, 4] the geometric integral (1.9) should in fact

coincide with another geometric quantity: an area of a minimal surface in AdS

F (1)
n = Minimal area (1.10)
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with boundary defined by the external momenta. After a T -duality transformation

of the n-point function the boundary conditions become Dirichlet and state that the

boundary of the surface is the same polygon Π, figure 1, formed by the external

momenta pa and located on the boundary of AdS [1].

Classically, the minimal area (defined by the Nambu-Goto string action) can be

rewritten as the classical action of the AdS σ-model in conformal gauge [1]. The

world-sheet σ-model equations of motion are

∆z = zL,

∆v = vL

z2L − (∂z)2 = (z∂v − v∂z)2 (1.11)

where ∆ ≡ ∂2/∂u2
1 + ∂2/∂u2

2 ≡ ∂2 is the Laplacian on the world-sheet, described by

the coordinates ~u = (u1, u2),−∞ < ui < +∞, while z and v are coordinates of AdS,

related to the T -dual (yµ, r) and the embedding ones (Y, Y±) by

v =
y

r
= Y, z =

1

r
= Y+,

r2 − y2

r
= Y− (1.12)

(f) Let us concentrate on the n = 4 case, a case in which considerable progress has been

made in [1]. As we demonstrate in section 3, in this case there is a whole class of

solutions with constant L, some of which are related by SO(4, 2) transforms to the

Alday-Maldacena solution [1]. They are

z =

n
∑

a=1

zae
~ka~u v =

n
∑

a=1

vae
~ka~u (1.13)

The four 2-vectors ~ka all have the same length ~k2
a = L and are directed along the

diagonals of a rectangular. The four 4-vectors va are related to the external momenta

by

pa =
va+1

za+1
− va

za
(1.14)

This relation can be considered as defining va for given pa and za, while the only

remaining constraint imposed by the equations of motion on the four parameters za

is

z1z3s + z2z4t = 1 (1.15)

With constant L, the action (minimal surface area)
∫

Ld2u looks independent of

external momenta, but actually the integral diverges and requires regularization.

According to [1], a special dimensional regularization defines properly the surface

area and reproduces the expression of F
(1)
n conjectured in [2], but it breaks the AdS-

structure of the model, together with its symmetries and integrability, perhaps in an

unnecessarily violent manner. See [12] for an extension of [1] to 1/
√

λ corrections (at
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this stage only divergent terms, excluded from F
(1)
n , are examined) and discussion of

potential problems beyond one loop caused by this version of ǫ-regularization.

Nevertheless, in section 4 the regularization prescription of [1] is naively applied to

our solutions as well. It leads to a regularized minimal area in the form of an integral,

which depends only on z. This means that solutions with different {za}’s, even if

they are SO(4, 2) transforms of each other, can give rise to different ”areas” after

regularization: what may be considered as a new kind of anomaly. Then, as usual

in anomalous theories, we minimized the resulting expression over the moduli space

of solutions under the constraint (1.15). The area of the minimal surface obtained

depends, of course, on s and t because of the constraint and remarkably enough, it

reproduces exactly the Alday-Maldacena result [1].

A few general remarks and speculations about the present program are in order here.

First, for n > 4 the Lagrangian density L for configurations of the form (1.13) is no

longer constant, so that the latter may at best be considered an approximate solution — a

”trial function” — which might provide an almost but not exactly minimal surface. Exact

solutions of the SO(4, 2) sigma-model [34, 35], allowing for growing asymptotics, remain to

be found. The vast majority of studies in the field of sigma-models are concentrated on two

issues: Lax representation and finite-action (instanton-like) solutions. By contrast, what is

needed here are solutions with infinite action to make regularization necessary. Moreover,

the target space is non-compact and in the standard σ-model coordinates the solutions of

interest are exponentially growing. It is not a big surprise that they have not been studied

thoroughly in the literature.

Second, if the regularization scheme has to break the integrability of the sigma model,

then the Whitham theory [36] may be relevant, since it is well-known [37] that renormal-

ization group (RG) flows in the vicinity of integrable systems are well described in terms of

Whitham hierarchies. At the same time AdS geometry itself should provide a reasonable

description of the same RG behavior [38], so that one can probably stay within the pure

integrable framework.

Third, whatever regularization is used, the resulting integral will have the general form
∫

d2uLǫz
ǫ (1.16)

A key step would be to recognize in the finite part of that integral the same kind of

bilinear structure that exists in its counterpart formula (1.5) or its equivalent double-

contour integral (1.9).

Finally, one might expect that the hoped for relation
∮

∂S

∮

∂S

dyµdy′µ
(y − y′)2+ǫ

= Area ǫof a minimal surface S (1.17)

advertized by the AdS/CFT approach, is one between two purely geometric quantities, and

should not require any reference to quantum field theory in order to be formulated and

proved. However, the regularized area on the r.h.s. still needs to be defined in geometric

terms. Perhaps, the puzzling relation (1.17) can itself be used as a clue to such a definition.
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Also, the ”area” on the r.h.s. is not well defined until a regularization prescription is

clearly formulated and the resulting ”anomaly” problem is resolved.

This concludes our introductory remarks, as well as a brief presentation of our results.

The rest of the paper contains detailed explanations of the statements made above and

is organized as follows. In section 2 we expand upon the Gauge Theory side and give a

potentially useful pictorial representation of the BDS formula for F
(1)
n . Section 3 contains

the presentation of our multi-parameter class of solutions of the AdS σ-model for n =

4. In section 4 we use the regularization prescription employed in [1] and compute the

minimal area, as a function of the parameters of the solutions. Upon minimization with

respect to the moduli we obtain the Alday-Maldacena result. The final section contains a

brief summary of our results, a review of open questions related to the present work and

suggestions of possible directions for further study.

2. Properties of F
(1)

2.1 The BDS formula

F
(1)
n in (1.4) is a function of invariant variables tab =

(

∑b−1
c=a pc

)2
= (pa + Pab)

2. These

t-variables are nothing but squares of diagonals in a polygon Π, figure 4, which is closed

due to momentum conservation
∑n

a=1 pa = 0. Given this association of t-variables with

diagonals, it is also natural to denote tab = t
[b−a]
a where [b − a] is the size of the diagonal:

the number of polygon sides that it embraces. Of course, tab = tba, t
[2]
a = sa,a+1 and one

can restrict diagonal sizes r by r ≤ n/2. Of all t variables only 3n − 4 − 6 = 3n − 10

are actually independent (3 stands for three independent components of a null-vector, 4

constraints are imposed by 4-momentum conservation,
∑n

a=1 pa = 0, 10 is the number of

Lorentz rotations and translations in 4 dimensions, which all act on p-variables as long as

n ≥ 4), this is, however, not important for our purposes below.

According to [2], in the N = 4 supersymmetric gauge theory F
(1)
n decomposes into a

sum of terms, each depending on only four out of all t-variables. Some of these terms

are dilogarithms, while others are squares of ordinary logarithms. The BDS formula

(eqs.(4.59)-(4.63) of [2], in a slightly different notation) states that

F (1)
n = Dn + L(1)

n + L(2)
n + const (2.1)

where

Dn = −1

4

n
∑

a=1

n−4
∑

r=2

Li2

(

1 − t
[r]
a t

[r+2]
a+1

t
[r+1]
a t

[r+1]
a+1

)

, (2.2)

and

L(1)
n = −1

2

n
∑

a=1

[n/2]−1
∑

r=2

(

τ [r+1]
a − τ [r]

a

)(

τ [r+1]
a − τ

[r]
a+1

)

(2.3)
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Figure 4: A formal polygon Π made by the external momenta pa, the same as in figure 1. The

picture shows the labeling of vertices, edges and diagonals used throughout the text. Note that

diagonals appear only through their squares tab. All vectors are Minkowskian, and in the N = 4

SYM theory, all pa are null p2
a = 0.

with τ
[r]
a = log(−ta,a+r). The remaining logarithmic term is different for even and odd n,

namely

for even n = 2m : L(2)
n = −1

8

n
∑

a=1

(

τ [m]
a − τ

[m]
a+m+1

)(

τ
[m]
a+1 − τ

[m]
a+m

)

(2.4)

while

for odd n = 2m + 1 : L(2)
n = −1

4

n
∑

a=1

(

τ [m]
a − τ

[m]
a+m+1

)(

τ
[m]
a+1 − τ

[m]
a+m

)

(2.5)

where m =
[

n/2
]

. Note that in (2.4) each τ
[m]
a appears twice, as τ

[m]
a and τ

[m]
a+m, but this is

not the case in (2.5) – this explains the difference in the coefficients in front of the sums.

The dilogarithmic part of (2.1) is actually a sum over 4-clusters (figure 2) in a polygon

Π, (figure 4) of the quantity

1

2

∑

p,q

Li2

(

1 − P2Q2

st

)

(2.6)

A 4-cluster, figure 2, is formed by two non-adjacent edges pa = p and pb = q in Π and

consists of the four diagonals of Π, connecting the corresponding four vertices a, a+1, a+r,

a+ r + 1. Squared lengths of these four diagonals are ta,b+1 = t
[r+2]
a = Q2, tab = t

[r+1]
a = s,

ta+1,b+1 = t
[r+1]
a+1 = t and ta+1,b = t

[r]
a+1 = P2, where P = Pab and Q = Pba and r = j− i−1

is the size of the shortest diagonal in the cluster. It is indeed a diagonal only for r ≥ 2 and

such 4-clusters — and thus dilogarithmic contributions to F
(1)
n — exist for n ≥ 6.

– 9 –
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Figure 5: Degenerate 4-cluster: one of the would-be diagonals is actually an edge of Π, thus

it is null and the corresponding t would be zero. Degenerate clusters do not contribute to the

dilogarithmic part of the BDS formula (2.2), but do contribute to the logarithmic part (2.3), see

figure 2.

Note that, from the point of view of scattering theory, eq. (2.1) is better than (2.6)

because the summation over different appearances of each tab is already performed. How-

ever, the older formula (2.6) better suites our purposes, since it describes more nicely the

internal structures of the problem.

2.2 A pictorial representation

The simple structure of the somewhat sophisticated formula (2.1) can be revealed in pic-

tures. As already mentioned, eq. (2.1) represents F
(1)
n as a sum over all 4-clusters of the

polygon, with the single exception of peculiar 5-clusters, figure 10, contributing for odd n.

Degenerate 4-clusters where the smallest diagonal coincides with an edge, figure 5, do not

contribute to the dilogarithmic piece (2.2), but only to the logarithmic one (2.3). Since for

n = 4 and n = 5 all 4-clusters are degenerate, there are no dilogarithms at all in F
(1)
4 and

F
(1)
5 .

The dilogarithm is made out of the four diagonals of a non-degenerate 4-cluster. The

four τ -parameters associated with the four diagonals are summed with the signs shown in

figure 6, the sum is exponentiated to give a ratio of t’s, which is further subtracted from

unity and used as an argument of a dilogarithm.

Logarithms are a little bit trickier. The smallest diagonal does not contribute (thus

degenerate clusters are allowed), while the largest one contributes twice. The contribution

of a 4-cluster is the product of the two differences of τ for the largest diagonal and τ ’s for

the two medium diagonals, figure 7.

Additional complications arise when the largest diagonal in the cluster is the main

diagonal of the polygon Π. The situation is somewhat different for n even and odd.

For even n the main diagonal is just the diameter of Π. When the largest diagonal of

the cluster is a diameter, it appears in two different 4-clusters — to the right and to the left

of the diameter, figure 8, — and both clusters should be included into the sum. Finally,
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Figure 6: Relative signs of the contributions of different diagonals of a given cluster to an argument

of dilogarithm in (2.2): log P2Q2

st
= τl + τs − τm1 − τm2, see figure 2.
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Figure 7: Generic 4-cluster with well defined ”long” diagonal. Its contribution to the logarithmic

part of the BDS formula (2.3) is 1
2 (τl−τm1

)(τl−τm2
) and does not depend on the ”short” diagonal.

Therefore this contribution is well defined even for the degenerate clusters in figure 5. Generic

4-cluster is fully defined by its long diagonal, so that each long diagonal contributes once to the

logarithmic part of the BDS formula and twice — to its dilogarithmic part. Exceptions from this

rule are the longest (main) diagonals of Π, see figures 8- 10.

some clusters do not have the largest diagonal: they contain adjacent main diagonals

(diameter for even n), figure 9. The contribution of such a cluster is just the square of

differences between τ ’s for the two main diagonals, the smaller diagonals do not contribute

(they could coincide with edges if such a cluster happens to be degenerate – which is indeed

the case for n = 4 and n = 5).

For odd n contributing (along with figure 7) are peculiar 5-clusters with four main

diagonals, see figure 10.

2.3 Asymptotics for nearly light-like diagonals

If some t
[r]
b is much smaller than all other t’s, then the arguments of the corresponding

dilogarithms are large, so that the dilogarithms become squares of logarithms and cancel

against the logarithmic terms. Indeed, let us take some t
[r]
b → 0 — this means that the

corresponding τ
[r]
b → −∞ and see what happens to (2.1). If it appears in the numerator

of the argument of a dilogarithm, nothing happens because Li2(z) is regular near z = 1.
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Figure 8: Special 4-clusters in which the long diagonal is the longest (main) in Π: diameter of

Π for n even. In this picture the cluster has a single longest diagonal. Then its contribution to

the logarithmic part of the BDS formula (2.3) is the same as in figure 7, but there are two clusters

associated with this longest diagonal – one to its right and the other to its left.

¡
¡¡

q qq qq q

n even

long1 long2

Figure 9: Special 4-clusters where the long diagonals are the longest (main) in Π. The case of

even n is shown, when two long diagonals are diameters. The contribution of this 4-cluster to the

BDS formula (2.3)+(2.4) is 1
4

(

τl1 − τl2

)2

— very different from the one in figure 7.

However, if it appears in the denominator, the dilogarithm blows up and gets expressed

through ordinary logarithms via Li2(z) ∼ −1
2(log z)2 for |z| → ∞. Taking this into account,

we can write (note that our t
[r]
b appears in dilogarithms twice: also as t

[n−r]
b+r , hence the extra

factor of two in the dilogarithmic contributions in the first line of (2.7) below.)

2

8

(

τ
[r−1]
b + τ

[r+1]
b−1 − τ

[r]
b − τ

[r]
b−1

)2
+

2

8

(

τ
[r−1]
b+1 + τ

[r+1]
b − τ

[r]
b+1 − τ

[r]
b

)2
−

−1

2

(

τ
[r+1]
b − τ

[r]
b

)(

τ
[r+1]
b − τ

[r]
b+1

)

− 1

2

(

τ
[r]
b − τ

[r−1]
b

)(

τ
[r]
b − τ

[r−1]
b+1

)

−

−1

2

(

τ
[r+1]
b−1 − τ

[r]
b−1

)(

τ
[r+1]
b−1 − τ

[r]
b

)

(2.7)

It is easy to see that all terms with the underlined quantity cancel. As a result, this t
[r]
b

completely drops out from F
(1)
n for r ≥ 3. For r = 2 one should make a separate calculation

(since we ignored the restriction r > 2 in (2.7) and kept terms with r − 1), and it is easy
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n odd

l3

l4

l1
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Figure 10: In the case of odd n the longest (main) diagonals enter through a 5-cluster (involving

five vertices of Π). The contribution to the BDS formula (2.5) is made from four longest diagonals

and is given by 1
4

(

τl1 − τl2)(τl3 − τl4

)

— again very different from the one in figure 7. This is the

only case where 5-clusters contribute to the BDS formula.

to see that, in contrast to t
[r]
b with r > 2, the small t

[2]
b leads to a singularity in F

(1)
n of the

form, figure 11:

F (1)
n = −1

2
τ

[2]
b

(

τ
[2]
b−1 + τ

[2]
b+1 − τ

[3]
b−1 − τ

[3]
b

)

+ terms finite as τ
[r]
b → −∞ (2.8)

eq. (2.8) is not directly applicable also when t
[r]
b → 0 with maximal r =

[

n/2
]

, such t[r]s

enter (2.1) in a more sophisticated way; moreover, they are different for even and odd n,

see figures 9- 10. Still, it is easy to demonstrate that no singularity in F
(1)
n occurs when

t[r] → 0 with r =
[

n/2
]

— unless
[

n/2
]

= 2, i.e. n = 4 or n = 5. Note that at n = 4

eq. (2.8) also requires a correction:

F
(1)
4 =

1

4

(

log
s

t

)2
=

1

4
(log s)2 − 1

2
log s log t + terms finite as log s → −∞ (2.9)

coming from figure 9.

To analyse the singularities at large t one has to take into account all relations among

different t’s and is beyond the scope of this paper.

2.4 Boxes: two dilogarithmic representations

We now turn to the analysis of individual box contributions to F
(1)
n . Denoting p2 = q2 = 0,

s = (p + P)2, t = (q + P)2 for a particular box, associated with the 4-cluster in figure 2,

we obtain for the easy-box Feynman diagram, figure 3.A, with a massless scalar field in the

loop:

F 2me(s, t;P2,Q2) ∼
∫ 1

0

dβ1dβ2dβ3dβ4δ(1 − β1 − β2 − β3 − β4)

(−sβ1β3 − P2β3β4 − tβ2β4 − Q2β1β2)2+ǫ
(2.10)

The calculation of this integral is somewhat tedious. As a result, there are two essen-

tially different formulas for this quantity: the first one [31] is convenient to make contact

with (2.6), the second one [32] with (2.16), which will be studied in the next section 2.5

and, furthermore, with the contour integral (1.9). It is actually here, at (2.10), that the
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t
[2]
b+1

t
[2]
b

t
[2]
b−1

b − 1

b

W

s

k

]

¾

Figure 11: The single 4-cluster contributing to the asymptotic (2.8) of F
(1)
n as t

[2]
b

−→ 0 (the

corresponding diagonal is shown by thick line and becomes light-like in the limit). This is the

only type of singularities that F
(1)
n has at small t

[r]
a . Other clusters can also have singularities,

but they cancel between dilogarithmic and logarithmic contributions to (2.1). t
[r]
a with r = 2 are

distinguished because they never appear in denominators in arguments of dilogarithms.

roads split: one leads to the BDS formula in the form (2.1) and the other to its geometric

representation (1.9).

The BDK formula (eq. (4.44) of [31]) states that

F 2me(s, t;P2,Q2) =
2i

4π2

Γ(1−ǫ)Γ2(1+ǫ)

Γ(1−2ǫ)

1

st−P2Q2

{

1

ǫ2

[

1

(−s)ǫ
+

1

(−t)ǫ
− 1

(−P2)ǫ
− 1

(−Q2)ǫ

]

+

+Li2

(

1−P2Q2

st

)

−Li2

(

1−P2

s

)

−Li2

(

1−P2

t

)

−Li2

(

1−Q2

s

)

−Li2

(

1−Q2

t

)}

(2.11)

The first dilogarithm is exactly the same as in (2.6), other dilogarithms cancel non-trivially

between different 4-clusters in the sum (1.5). For n = 4 when both P2 = Q2 = 0 and n = 5

when either P2 = 0 or Q2 = 0 the first term disappears and there are no dilogarithms in

the answer at all (for n = 5 this still involves non-trivial cancelation of other dilogarithms

between different 4-clusters).

The DN formula (eq. (71) of [32]) states that

F 2me(s, t;P2,Q2) =
2i

4π2

Γ(1 − ǫ)Γ2(1 + ǫ)

Γ(1 − 2ǫ)

1

st − P2Q2
·

·
{

1

ǫ2

[(−s−iε

4πµ2

)−ǫ

+

(−t−iε

4πµ2

)−ǫ

−
(−P2−iε

4πµ2

)−ǫ

−
(−Q2−iε

4πµ2

)−ǫ]

+

+Li2
(

1−a(s+iε)
)

+Li2
(

1−a(t+iε)
)

−Li2
(

1−a(P2+iε)
)

−Li2
(

1−a(Q2+iε)
)

}

(2.12)
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with

a =
s + t − P2 − Q2

st − P2Q2

The equivalence of (2.11) and (2.12) shown in [32], is based on basic dilogarithmic

identities such as

Li2(z) =
∞
∑

k=1

zk

k2
, Li2(0) = 0, Li2(1) = ζ2 =

π2

6
,

Li2(z) + Li2(1 − z) = − log(1 − z) log z − π2

6
,

Li2(z) + Li2(1/z) = −1

2

(

log(−z)
)2 − π2

6
(2.13)

The rather lengthy proof is presented in appendix A of [32]. The equivalence of (2.11)

and (2.1) is one of the subjects of [2]. We skip these derivations here.

2.5 Double integral [22] along a polygon [9]

As shown in [9], the sum (1.5) of the easy-box diagrams, if represented in the form (2.12),

is nothing but the double contour integral (1.9) along the auxiliary polygon Π:

F (1)
n = (1.5)

(2.12)
=

∮

Π

∮

Π

dyµdy′µ
(y − y′)2+ǫ

(2.14)

Indeed, (1.9) is a sum of contributions coming from pairs of segments in Π. There are three

different types of pairs, which we briefly consider following [9]. In this section τp and τq

parameterize the segments p and q.

2.5.1 One null-segment p

No contribution because dydy′ = p2dτdτ ′ in the numerator vanishes for p2 = 0.

2.5.2 Two adjacent null-segments p and q

∫ 1

0

∫ 1

0

(pq)dτpdτq

(τpp + τqq)2+ǫ
=

(pq)−ǫ/2

21+ǫ/2

∫ 1

0

∫ 1

0

dτpdτq

(τpτq)1+ǫ/2
=

2

ǫ2
(2pq)−ǫ/2 , ǫ < 0 (2.15)

2.5.3 Two non-adjacent null-segments p and q

2pq = u = P2 + Q2 − s − t

∫ 1

0

∫ 1

0

(pq)dτpdτq
(

τpp + P + (1 − τq)q
)2+ǫ

τq→1−τq
=

=
1

2

∫ 1

0

∫ 1

0

(P2 + Q2 − s − t) dτpdτq
(

P2 + (s − P2)τp + (t − P2)τq + (P2 + Q2 − s − t)τpτq

)1+ ǫ
2

=

=
1

2

∫ 1

0

(P2 + Q2 − s − t) dτp

(P2 + Q2 − s − t)τp + t − P2
log

t + (Q2 − t)τp

P2 + (s − P2)τp
+ O(ǫ) =

= Li2(1 − as) + Li2(1 − at) − Li2(1 − aP2) − Li2(1 − aQ2) + O(ǫ) (2.16)
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with

a =
P2 + Q2 − s − t

P2Q2 − st
(2.17)

Since this contribution is finite, we do not preserve its ǫ-dependence.

3. Minimal surfaces with non-planar polygon boundaries

In contrast to the situation in AdS spaces, the study of minimal surfaces in flat space is an

old branch of mathematics with close links to the theory of Riemann surfaces and many

impressive results. The first non-trivial minimal surfaces, helicoid and catenoid, were found

by Meusnier in 1776 [39]. Among the next pioneers in the field were Scherk (1834) and

Schwarz (1890). In particular, Schwarz solved the problem of finding the minimal bounding

surface of a skew quadrilateral. For a survey of these old results and a presentation of the

state-of-the-art in the theory of minimal surfaces in Euclidean space see [40, 41].

In string theory the issue of minimal surfaces was first raised by D. Gross and P. Mende

in [42] in an application to scattering amplitudes at high energies: the saddle-point approx-

imation to the Veneziano and Koba-Nielsen formulas for scattering amplitudes is associated

with minimal surfaces in Euclidean (Minkowskian) space of appropriate dimension. They

studied the case n = 4 with the vectors pa lying in a 2 + 1-dimensional subspace R3
++−.

3.1 Generalities

3.1.1 Ambiguities in the formulation of the problem:

The problem of finding a minimal area, although it sounds as being a well-formulated

problem, it contains a few ambiguities due to the necessity of regularizing the infinite area

that emerges. While before regularization all the formulations are equivalent, this is not

necessarily the case after the regularization is performed.

The various formulations of this problem use:

• Different actions: Polyakov/Green-Schwarz (σ-model) and Nambu-Goto. The min-

imal area formulation is in terms of the Nambu-Goto action, while motivation for the

AdS geometry (with the fifth coordinate in the target-space associated with the Li-

ouville field in the first-quantized formalism) is more transparent in the σ-model

formulation. According to [33], the Nambu-Goto action with appropriate boundary

terms should be used.

• Different regularizations: shift and dimensional. Shift from the AdS boundary is

better conceptually, it is compatible with the RG interpretation of AdS, it preserves

supersymmetry and integrability; an unusual version of dimensional regularization

is used in [1]. For any regularization, the problem is that solutions of regularized

equations are much more difficult to find and one needs to get the most from solutions

of the non-regularized ones: in this respect the approach of [1] was successful, but, as

often happens in such circumstances, it is hard to generalize.
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• Different descriptions of the target-space: original (xµ, z) coordinates and T -

dual coordinates (yµ, r) can be naturally used, the metric in both cases has the

Poincare form, (dz2 + dxµdxµ)/z2 and (dr2 + dyµdyµ)/r2 = (dr2 − dy2
0 + dy2

1 +

dy2
2 + dy2

3)/r
2, but boundary conditions are imposed at z → ∞ and r → 0 and

they are Dirichlet conditions in the (r,y) case. According to [1], transition to dual

variables also eliminates boundary terms, which had to be added in the Nambu-Goto

action [33].

• Different coordinates at the boundary: say, y± = y0 ± y1, y2, y3 or y0, y1, y2, y3

or y0, ξ1, ξ2, y3 etc. This is a purely technical issue, but many papers differ mostly in

these choices.

Literature: Most considerations in the literature are devoted to a single cusp (see, how-

ever, [33]) formed by two null-lines [33, 18, 27, 7]. In [18] this was done in rapidity coor-

dinates, and actually four cusps were implicitly involved. In [1] this fact was exploited to

construct a solution with rhombic projection of the boundary on the (y1, y2) plane.

3.1.2 The Nambu-Goto action with y3 = 0 in y1, y2 projection:

In this case it is convenient to choose the gauge with the two world-sheet coordinates

identified with the coordinates (y1, y2). Then, the Nambu-Goto action is

SNG =

∫ ∫

dy1dy2

r2

√
H, (3.1)

H = 1 − (∂1y)2−(∂2y)2+(∂1r)
2
[

1 − (∂2y)2
]

+(∂2r)
2
[

1 − (∂1y)2
]

+2∂1r∂2r∂1y∂2y (3.2)

The equations of motion are

∂i
∂iy

r2
√

H
+ ∂2

∂1r(∂1r∂2y − ∂2r∂1y)

r2
√

H
− ∂1

∂2r(∂1r∂2y − ∂2r∂1y)

r2
√

H
= 0 (3.3)

∂i
∂ir

r2
√

H
+ ∂2

∂1y(∂1r∂2y − ∂2r∂1y)

r2
√

H
− ∂1

∂2y(∂1r∂2y − ∂2r∂1y)

r2
√

H
+

2

r2
√

H
= 0 (3.4)

When approaching the boundary given by the segment perpendicular to a vector ~q,

~q~y = q1y1 + q2y2 = 1, the coordinate r behaves as r ∼
√

~q~y − 1. Poles in ∂⊥r are canceled

by zeroes of [1 − (∂||y)2]. These zeroes arise if boundary segments are null-vectors.

3.1.3 Nambu-Goto vs σ-model action

Formally at the classical level the two formulations should be equivalent, but with a non-

trivial 2d metric. In order to put the 2d metric into the conformal gauge, one needs to

make a general coordinate transformation.

It is worth noting, though, that only for the σ-model action one can perform a T -

duality transformation (r,x) → (z,y) with z = 1/r and ∂ix = z2ǫij∂jy. Indeed, this

transformation does not preserve the shape of the 2 × 2 tensor (induced metric)

Gij(r,x) =
∂ir∂jr + ∂ix∂jx

r2
(3.5)
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Moreover, it changes the determinant det Gij(r,x) 6= detGij(z,y), thus, the Nambu-

Goto action is formally not T -invariant. What is invariant, is the trace: δijGij(r,x) =

δijGij(z,y), and this is enough to guarantee T -invariance of the σ-model action and of the

associated Polyakov and Green-Schwarz actions.

3.1.4 Equations of motion for the AdS σ-model

The equations of motion for the σ-model action

Sσ =

∫

Ld2u, L =
(∂r)2 + (∂y)2

r2
(3.6)

(in appropriate coordinates (u1, u2) on the world sheet) are:

∂

(

∂r

r2

)

= −L

r

∂

(

∂y

r2

)

= 0 (3.7)

and in coordinates z = 1/r, v = y/r they acquire the form

∆z = zL,

∆v = vL

z2L − (∂z)2 = (z∂v − v∂z)2 (3.8)

For L = const solutions of the first two equations are sums of exponentials

z =

n
∑

a=1

zae
~ka~u,

v =
n

∑

a=1

vae
~ka~u (3.9)

with ~k2
a = L.

3.1.5 Boundary conditions

Since all vectors ~ka have equal lengths, the boundary conditions can also be easily satisfied

(see figure 12): when (~kb + ~kb+1)~u −→ ∞ only two terms with a = b − 1 and a = b

contribute, and the dependence on the orthogonal variable tb = e(~kb+1−~kb)~u/2 gets simple:

y =
vb+1tb + vbt

−1
b

zb+1tb + zbt
−1
b

(3.10)

and implies linear relations between components of the 4d vector y:

(zb+1v
ν
b − zbv

ν
b+1)y

µ − (zb+1v
µ
b − zbv

µ
b+1)y

ν = (vµ
b+1v

ν
b − vµ

b vν
b+1) (3.11)

As tb varies from 0 to ∞, the vector y changes from vb

zb
to

vb+1

zb+1
, and the boundary conditions

imply that this change is exactly the b-th external momentum pb:

∆by =
vb+1

zb+1
− vb

zb
= pb (3.12)
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~kb

~kb+1

~kb + ~kb+1

~kb+1 − ~kb

HH

Figure 12: Vectors ~ka lie in the Euclidean 2d u-plane. They all have the same length ~k2
a

= L = 2.

Far at infinity along the bisector ~kb + ~kb+1 and orthogonal to it is a line, directed along ~kb+1 − ~kb.

This is mapped by the fields z and v onto a vector pb — an edge of the polygon Π on the boundary

(z = ∞) of the AdS target space.

Equivalently, the boundary conditions are:

zbvb+1 − zb+1vb = zbzb+1pb (3.13)

We remind that, in our notation, b + n ≡ b.

3.1.6 The third equation: a problem

While the first two equations in (3.8) are easily satisfied by the ansatz (3.9) with L = const,

this is not generally true for the third equation. Indeed, after substitution of (3.9) it

becomes

∑

a,b

zazb

(

L − (~ka
~kb)

)

Ea+b =
∑

a<b

c<d

(PabPcd)(~kab
~kcd)Ea+b+c+d (3.14)

where Ea1+...+am = e(~ka1
+...+~kam )~u, ~kab = ~ka − ~kb and

Pab = zavb − zbva = zazb

(

pa + pa+1 + . . . + pb−1

)

= zazb

(

pa + Pab

)

(3.15)

Note that ~ka and ~kab are 2d vectors on the world sheet, while pa and Pab are 4d vectors in

the (T -dualized) target space. Incidentally, Pab are the vectors which enter eq. (2.10).
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The problem with eq. (3.14) is that the set of exponentials Ea+b+c+d on the r.h.s. is

larger then that of Ea+b on the l.h.s. The first term that causes trouble is (a, b, c, d) =

(a, a, a + 1, a − 1): there is no associated E = e(~ka+1+2~ka+~ka−1)~u on the l.h.s., while on the

r.h.s. it appears with the coefficient

za+1z
2
aza−1

[

(~ka − ~ka−1)(~ka − ~ka+1)
]

(2papa+1) (3.16)

The last bracket is nothing but ta,a+2 = (pa + pa+1)
2 6= 0, while the square bracket with

the scalar product of 2d vectors vanishes for all a only for n = 4 and with the ~k-vectors

pointing along the diagonals of a rectangle.

Beyond n = 4 the problem is somewhat reminiscent of Serre relations in group theory,

only here it does not seem to have a simple solution. So, we shall concentrate on the n = 4

case.

3.2 The example of quadrilaterals, n = 4

3.2.1 An anomaly

4d Lorentz invariance allows one to convert the original geometry, associated with the four

momenta pa, to any convenient form with just two independent parameters s and t. To

begin with, it allows to choose y-coordinates so that y3 = 0 and consider projections of

the momenta on the (y1, y2) plane, where they form an ordinary quadrilateral. In order to

provide a closed line in the y0-projection the side lengths of the edges of this quadrilateral

should satisfy an additional constraint

l1 ± l2 ± l3 ± l4 = 0. (3.17)

A non-planar quadrilateral in y-space arises if the signs are taken to be (+ − +−). Thus

for further calculations one can choose any 2-parametric family of quadrilaterals in (y1, y2)

plane with l1 + l3 = l2 + l4. For the two independent parameters
√

s and
√

t one can take

the two diagonals (in space-time, not in the projection on the (y1, y2) plane — this is the

same only when l1 = l2, i.e. for the cases of rhombus and kite).

In [1], the shape was chosen to be rhombic, l1 = l2 = l3 = l4, but we do not impose such

restriction in this section. This provides an additional self-consistency check: the result

(regularized minimal area) should be Lorentz invariant and independent of the particular

shape of the quadrilateral. This is not fully guaranteed, because any particular solutions

of the equations of motion spontaneously break Lorentz invariance and — while obviously

restored in the non-regularized problem (indeed, L = 2 for all solutions) — it can still

remain broken after regularization.

Unfortunately this is what eventually happens, as we shall see below: this self-consistency

check actually fails. The reason will be that the regularized minimal area, defined accord-

ing to the recipe of [1], depends on the lifting from the boundary conditions ({pa} or,

equivalently, {va}) to the space of solutions (parameterized by ({za}) and there is no ob-

vious canonical choice of this lifting, i.e. it does not produce a unique answer. The Lorentz

invariance itself can be easily restored if one asks the lifting to remain intact under Lorentz

rotation, but there is still no distinguished way to obtain an answer for given s and t. As
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Figure 13: Minimal surfaces, connected (a) by a Lorentz transformation from SO(3, 1) and (b) by

some non-Lorentzian transformation from SO(4, 2). From the point of view of a remote observer,

located at finite z, boundary conditions with three different polygons: P1, its Lorentz rotated version

P2 and an essentially different P3 should be considered equivalent. However, as is clear from the

picture, the actual areas should not coincide: they differ by the area of the shadowed domain, which

may not be negligible. This picture also shows that the anomaly, considered in this paper, may

not be an artifact of the ǫ-regularization of [1]: it can be present for conventional r2 → r2 + ǫ2

regularization as well.

shown in [1], a lifting exists that reproduces the BDS formula, but it is unclear what are

the a priori reasons to choose this particular lifting and what are the ways to generalize it

to other (non-rhombic) shapes — other than just an SO(4, 2) rotation of the same ad hoc

prescription. See figure 13 for a pictorial description of this anomaly.

The resolution of the anomaly is well known. When the result is a non-trivial function

on moduli space, one should integrate over it or, classically, find its extremum. This is

exactly what we shall do in section 4.6.

3.2.2 Equation and solutions

The boundary conditions (3.13) are

P12 = z1v2 − z2v1 = z1z2p1,

P23 = z2v3 − z3v2 = z2z3p2,

P34 = z3v4 − z4v3 = z3z4p3,

P41 = z4v1 − z1v4 = z4z1p4 (3.18)

or

pa =
va+1

za+1
− va

za
(3.19)

It follows that

P13 = z1v3 − z3v1 = z1z3(p1 + p2)

P24 = z2v4 − z4v2 = z2z4(p1 + p3) (3.20)
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Figure 14: Concrete choice (3.23) of the ~k-vectors on the 2d u-plane.

As shown in [1], in the case of n = 4 L can be constant, as will be verified by the explicit

solution below and, following [1], we adjust the scale of ~u so that L = 2. The non-trivial

(third) equation of motion in (3.8) is

2z2 − (∂z)2 = (z∂v − v∂z)2 (3.21)

In the form (3.14) this equation reads

4
∑

a,b=1

zazb

(

2 − (~ka
~kb)

)

Ea+b =
∑

a<b

c<d

(PabPcd)(~kab
~kcd)Ea+b+c+d (3.22)

Let us begin with a special — Z4-symmetric — choice of the n = 4 2d vectors ~k with
~k2 = L = 2, shown in figure 14

~k1 = (+1,+1), ~k2 = (+1,−1), ~k3 = (−1,−1) = −~k1, ~k4 = (−1,+1) = −~k2, (3.23)

Clearly, in this case one can relabel indices 3 and 4 of the exponentials Ea to −1 and

−2 respectively, what we shall do in some of the formulas. It is also natural to label

E1+4 = E1−2 and E1−1 = E0 = 1. In this notation

z∂v − v∂z =
∑

a,b

~kab ⊗ PabEa+b = z1z2
~k12 ⊗ p1 E1+2 + z1z3

~k13 ⊗ (p1 + p2)E0 −(3.24)

−z1z4
~k14 ⊗ p4 E1−2 + z2z3

~k23 ⊗ p2 E−1+2 +

+z2z4
~k24 ⊗ (p2 + p3)E0 + z3z4

~k34 ⊗ p3 E−1−2
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and the equation becomes

8
(

z1z3 + z2z4

)

E0 + 4
(

z1z2E1+2 + z2z3E−1+2 + z3z4E−1−2 + z1z4E1−2

)

=

=
(

(z1z3)
2~k2

13(p1 + p2)
2 + (z2z4)

2~k2
24(p2 + p3)

2 +

+2z1z2z3z4

[

(~k12
~k34)(p1p3) − (~k14

~k23)(p2p4)
]

)

E0 +

+2z1z2

(

z1z3(~k12
~k13)

[

p1(p1 + p2)
]

+ z2z4(~k12
~k24)

[

p1(p2 + p3)
]

)

E1+2 +

+2z2z3

(

z1z3(~k23
~k13)

[

p2(p1 + p2)
]

+ z2z4(~k23
~k24)

[

p2(p2 + p3)
]

)

E−1+2 +

+2z3z4

(

z1z3(~k34
~k13)

[

p3(p1 + p2)
]

+ z2z4(~k34
~k24)

[

p3(p2 + p3)
]

)

E−1−2 −

−2z1z4

(

z1z3(~k14
~k13)

[

p4(p1 + p2)
]

+ z2z4(~k14
~k24)

[

p4(p2 + p3)
]

)

E1−2 (3.25)

Many terms are actually absent from the r.h.s. due to p2
a = 0 or ~k2

a = 2 or ~ka
~ka+1 = 0.

Most important, these conditions are enough to exclude terms like E1+1+2+2 or E1+1 from

the r.h.s., which would have no counterparts at all on the l.h.s. More explicitly,

• terms like E1+1+2+2 in the quartic part (i.e. at the r.h.s.) do not appear because

p2
a = 0,

• terms like E1+1 = E(1+2)+(−1+2) in the quartic part (on the r.h.s.) do not appear

because of ~ka
~ka+1 = 0,

• terms like E1+1 = E(1+2)+(−1+2) in the quadratic part (on the l.h.s.) do not appear

because of ~k2
a = 2.

As a result of these cancelations we are left with five equations: those for E±1±2 and

E0 = 1

E0 : z1z3 + z2z4 = (z1z3)
2s + (z2z4)

2t − z1z2z3z4u = (z1z3 + z2z4)
(

z1z3s+z2z4t
)

E1+2 : z1z2 = z1z2

(

z1z3s − z2z4(s + u)
)

= z1z2

(

z1z3s+z2z4t
)

E−1+2 : z2z3 = z2z3

(

z1z3s + z2z4t
)

E−1−2 : z3z4 = z3z4

(

− z1z3(t + u) + z2z4t
)

= z3z4

(

z1z3s+z2z4t
)

E1−2 : z1z4 = −z1z4

(

z1z3(t + u) + z2z4(u + s)
)

= z1z4

(

z1z3s+z2z4t
)

(3.26)

Here s = (p1 + p2)
2 = 2p1p2, t = (p2 + p3)

2 = 2p2p3, u = (p1 + p3)
2 = 2p1p3 =

2p2p4 = −s − t.

All five equations above coincide and are equivalent to the single relation

z1z3s + z2z4t = 1 , or z1z3t13 + z2z4t24 = 1 (3.27)

3.3 SO(4, 2) symmetry between different choices of za

Eq. (3.27) defines the common scale of all factors za, but does not fix relations between

them. Since all the solutions with different choices of {za} have the same Lagrangian value
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L = 2, it is clear that they are related by a symmetry. This symmetry is nothing but the

conformal group SO(4, 2). Indeed, our z and v variables are nothing but flat coordinates

in R
6
++++−−,

v =
y

r
=

Y

R
, z =

1

r
=

Y−1 + Y4

R2
= Y+,

r2 − y2

r
= Y−1 − Y4 = Y−, (3.28)

where SO(4, 2) acts linearly and AdS5 is embedded as a quadratic

Y2 + Y+Y− = Y 2
−1 + Y 2

0 − Y 2
1 − Y 2

2 − Y 2
3 − Y 2

4 = R2 (3.29)

The flat metric in R
6 induces the AdS metric in the Poincare form

dY2 + dY+dY− =
dr2 + dy2

r2
(3.30)

A priori, the ansatz (3.9) does not seem to imply anything nice for the ~u-dependence

of the sixth σ-model coordinate Y−. However, eq. (3.27) is exactly the condition that Y−

is also a sum of n = 4 exponentials,

Y− =
n

∑

a=1

waEa (3.31)

Indeed, substituting this expression together with (3.9) into (3.29), one obtains

0 = (z1E1 + z2E2 + z3E3 + z4E4)(w1E1 + w2E2 + w3E3 + w4E4)

−(v1E1 + v2E2 + v3E3 + v4E4)
2 − 1

=
4

∑

a=1

{(

zawa − v2
a

)

E2
a +

(

zawa+1 + za+1wa − 2vava+1

)

EaEa+1

}

+
(

w1z3 + w2z4 + w3z1 + w4z2 − 2v1v3 − 2v2v4 − 1
)

The vanishing condition for the first term defines

wa =
v2

a

za
(3.32)

The coefficient in the second term is then equal to

za

za+1
v2

a+1 +
za+1

za
v2

a − 2vava+1 =

(

zava+1 − za+1va

)2

zaza+1

(3.12)
= zaza+1pa

2 = 0

and vanishes automatically. Finally, vanishing the last term is exactly the relation (3.27).

Note that the Lorentz transformations SO(3, 1) can change pa and the shape of the

boundary in target space, but they are not enough to relate solutions with different {za}.
The problem is that conformal symmetry and thus the equivalence between different choices

of {za} is broken by dimensional regularization a la [1]. We return to a discussion of

this anomaly problem in section 4 and especially in Subsection 4.6. The resolution of the

anomaly problem will lead to the existence of preferable choices for {za} for given boundary

conditions.
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3.4 Solutions for n = 4

In this subsection we write down explicitly various solutions for the n = 4 case in the

rapidity coordinates ξ1 = tanh u1, ξ2 = tanh u2.

3.4.1 The Alday-Maldacena solution [1]

The principal choice of [1] is

z3 = z1, z4 = z2 (3.33)

Then equation (3.27) becomes

z2
1s + z2

2t = 1 (3.34)

but it still leaves a one-parameter freedom in the choice of z1 and z2. Alday and Maldacena

fix it by putting

z2
1 =

1

2s
, z2

2 =
1

2t
(3.35)

and find it convenient to reexpress everything in intermediate formulas through auxiliary

parameters a and b:

s =
A2

2(1 − b)2
, t =

A2

2(1 + b)2
, z1 =

1 − b

A
, z2 =

1 + b

A
, A =

a

2π
(3.36)

This choice of za does not actually restrict the possibility to impose arbitrary boundary

conditions and we shall see in a moment that the generic set of external momenta {pa}
can be described with (3.36). However, in [1] the particular choice is made

r = a

√

(1 − ξ2
1)(1 − ξ2

2)

1 + bξ2ξ2
, y0 = a

√
1 + b2ξ1ξ2

1 + bξ1ξ2
, y1 = a

ξ1

1 + bξ1ξ2
,

y2 = a
ξ2

1 + bξ1ξ2
, y3 = 0, (3.37)

where ξ1 = tanh u1, ξ2 = tanh u2 are the rapidity variables. In these coordinates, the four

boundaries of our quadrilateral are at ξ1,2 = ±1, and the whole solution is a mapping of a

square in the rapidity plane into the target space. In terms of y1,2, the boundaries are at

y1 + by2 = ±a and by1 + y2 = ±a, i.e. form a rhombus with diagonals
√

s and
√

t. Note

that, since l1 = l2 = l3 = l4, the squares of diagonals in space-time (which are actually s

and t) coincide with the squares of their projections onto the (y1, y2) plane.

¿From (3.37) we can deduce the Nambu-Goto action for this solution: H = 1+bξ1ξ2
1−bξ1ξ2

,

dy1 ∧ dy2 = 1−bξ1ξ2
(1+bξ1ξ2)3

dξ1 ∧ dξ2, the equations of motion are again true, and

SNG =

∫ 1

0

∫ 1

0

dξ1dξ2

(1 − ξ2
1)(1 − ξ2

2)
(3.38)

obviously coincides with the σ-model action.
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3.4.2 Beyond [1]

Thus, the Alday-Maldacena solution is fixed by three choices: (3.33), (3.35) and (3.37).

Actually all three are ambigous and can be deformed, giving rise to new solutions: not a

big surprise given the SO(4, 2) symmetry of the problem. One could safely take any family

of solutions sufficient to describe arbitrary values of s and t and ignore all the rest – if

SO(4, 2) symmetry was not violated by ǫ-regularization. Since only regularized area makes

sense, one should actually analyze all solutions and see what happens — and the result

is unpleasant: the answer depends on the choice. The answer matches the BDS formula

for the Alday-Maldacena choice, but they do not match in general. A priori no way to

distinguish the Alday-Maldacena choice among all others remain unclear. We shall propose

a way after regularization in section 4.6.

Needless to say, it is unclear what should be a counterpart of the Alday-Maldacena

choice for n > 4, where a variety of methods, including approximate and numerical, could

be used if one knew what kind of solution one should concentrate on. It is to demonstrate

all these issues that we proceed with the detailed presentation of other solutions as well.

3.4.3 All za equal

Before we proceed with the discussion of the Alday-Maldacena solution and its general-

izations to arbitrary quadrilaterals in the target space, we now analyze a much simpler

option: when all four za are the same, and according to (3.27)

za =
1√

s + t
(3.39)

Then (3.9) implies that z = 4cosh u1 cosh u2 and in rapidity coordinates,

r = a
√

(1 − ξ2
1)(1 − ξ2

2),

y = α + βξ1 + γξ2 + δξ1ξ2 (3.40)

where a =
√

s + t and the four 4d vectors

α =
a

4

(

v1 + v2 + v3 + v4

)

,

β =
a

4

(

v1 + v2 − v3 − v4

)

,

γ =
a

4

(

v1 − v2 − v3 + v4

)

,

δ =
a

4

(

v1 − v2 + v3 − v4

)

(3.41)

At the four boundaries of the square ξ1, ξ2 = ±1 , y form four segments of straight lines,

which should coincide with the four external momenta: these are our familiar boundary

conditions (3.12),

va+1 − va =
pa√
s + t

(3.42)
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Putting, say, ξ1 = 1 one obtains y = (α + β) + (γ + δ)ξ2, which varies along the segment

ξ2 = [−1, 1] from (α + β) − (γ + δ) to (α + β) + (γ + δ), i.e.

∆1y = 2(γ + δ) = −p1 (3.43)

Similarly

∆2y = 2(β + δ) = p4,

∆−1y = 2(γ − δ) = p3,

∆−2y = 2(β − δ) = −p2 (3.44)

along the boundaries ξ2 = 1, ξ1 = −1 and ξ2 = −1 respectively, so that equivalently

β = −1

4
(p2 − p4),

γ = −1

4
(p1 − p3),

δ = −1

4
(p1 + p3) =

1

4
(p2 + p4) (3.45)

while α is a total shift of y and remains unspecified by the boundary conditions — like the

weighted common shift of all v-vectors, va → va + zaw.

Thus, it is explicitly shown that a solution exists with all za for arbitrary choice of

external momenta pa. With the same choice of momenta as in [1],

p1 =
2

1 − b2

(
√

1 + b2, 1, −b, 0
)

(3.46)

p2 =
2

1 − b2

(

−
√

1 + b2, −b, 1, 0
)

(3.47)

p3 =
2

1 − b2

(
√

1 + b2, −1, b, 0
)

(3.48)

p4 =
2

1 − b2

(

−
√

1 + b2, b, −1, 0
)

(3.49)

one obtains the solution with

v1 = −1

4

(

1,
1√

1 + b2
,

1√
1 + b2

, 0

)

(3.50)

v2 = −1

4

(

−1, − 1√
1 + b2

,
1 + 2b√
1 + b2

, 0

)

(3.51)

v3 = −1

4

(

1,
2b − 1√
1 + b2

,
2b − 1√
1 + b2

, 0

)

(3.52)

v4 = −1

4

(

−1,
1 + 2b√
1 + b2

, − 1√
1 + b2

, 0

)

(3.53)

This gives

y0 = aξ1ξ2, y1 =
a√

1 + b2
(b + bξ1 − ξ2), y2 =

a√
1 + b2

(−b + ξ1 + bξ2) (3.54)

Along with these expressions describing the square (at b = 0) and rhombus choices [1]

(see figures 15.A,B), one can consider a kite, figure 15.C, or arbitrary asymmetric skew

quadrilateral satisfying l1 + l3 = l2 + l4, figure 15.D.
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Figure 15: Examples of quadrilaterals on the boundary of the AdS target space at r = 0 and also

with y3 = 0, together with their projections onto the (y1, y2) plane: A. Square. B. Rhombus. C.

Kite. D. generic skew quadrilateral.

3.4.4 The Alday-Maldacena solution revisited

Coming back to the Alday-Maldacena solution, it is now clear, that as for any other choice

of {za} it could describe an arbitrary configuration of pa, not only rhombic. Indeed, if we

impose (3.33) and (3.36), we can still write instead of (3.37)

r = a
√

(1 − ξ2
1)(1 − ξ2

2),

y =
α + βξ1 + γξ2 + δξ1ξ2

1 + bξ1ξ2
(3.55)

At the same boundaries ξ1,2 = ±1 we now have straight segments in y space, parameterized

in a slightly more complicated way. For example at ξ1 = 1

y =
(α + β) + (γ + δ)ξ2

1 + bξ2
(3.56)
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It is indeed a straight line, an intersection of three 3d hyperplanes in 4d space given by

qy = c with
(

(γ + δ) − b(α + β)
)

q = 0 and c = q(α + β). The corresponding vector

∆1y =
2(γ + δ)

1 − b2
− 2b(α + β)

1 − b2
= −p1 (3.57)

Similarly, the analogues of (3.44) and (3.45) are:

∆2y =
2(β + δ)

1 − b2
− 2b(α + γ)

1 − b2
= p4,

∆−1y =
2(γ − δ)

1 − b2
+

2b(α − β)

1 − b2
= p3,

∆−2y =
2(β − δ)

1 − b2
+

2b(α − γ)

1 − b2
= −p2 (3.58)

and

β = −1 − b2

4
(p2 − p4 + b(p1 − p3)),

γ = −1 − b2

4
(p1 − p3 + b(p2 − p4)),

bα − δ = −1 − b2

4
(p2 + p4) =

1 − b2

4
(p1 + p3) (3.59)

with α and δ not uniquely specified.

The Alday-Maldacena original choice (3.49) being substituted into (3.59) with b 6= 0,

reproduces (3.37), while substitution of the same (3.49) into (3.45) gives a different-looking

but equivalent solution — before ǫ-regularization!

3.4.5 An example of one-cusp solution

The next examples concern one-cusp solutions (in fact, it is rather a corner than a cusp,

the name seems to be due to historical reasons).

Choice 3: Direction towards a cusp is along one of the vectors ~k, say, ~k1. In this limit

Eb dominates over all other exponentials. However, one can make use of the freedom to

shift va’s without changing the boundary conditions to put v1 = 0 (this can not be done

for all corners/cusps of the polygon at once, but is allowed in the case of a single isolated

cusp). Then the two adjacent exponentials should be kept in the formulas for v and the

single-cusp solution (3.9) becomes

z = z1E1 + O(E±2),

v = v2E2 + v4E−2 + O(E−1) (3.60)

Since v1 = 0, the boundary conditions are now z1v2 = z1z2p1 and −z1v4 = z1z4p4.

Now using eq. (3.27), one obtains 1 − z1z3s = z2z4t = (2p1p4)z2z4 = −2v2v4/z
2
1 . In the

literature, the remaining freedom is typically used to fix z3 = 0, which leads to

2v2v4 = z2
1 (3.61)
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The solution (3.60) still can be chosen in different ways: depending on the choice of v2 and

v4, which are restricted by a single constraint (3.61). In particular, in [18, 33, 27, 1]

z1 =
√

2, v+
2 = 1, v−4 = 1,

z =
√

2E1 =
√

2eu1+u2, v+ = v0 + v1 = E2 = eu1−u2,

v− = v0 − v1 = E−2 = e−u1+u2, v2 = v3 = 0, (3.62)

and in [7]

z1 =
√

2, v+
2 = 1, v−4 = 1, v−2 = γ2, v2

2 = γ

z =
√

2E1, v+ = E2, v− = E−2 + γ2E2, v2 = γE2, v3 = 0,

(3.63)

so that in coordinates

(+,−, 2, 3) p1 =
v2

z2
=

(1, γ2, γ, 0)

z2
, p4 =

v4

z4
=

(0, 1, 0, 0)

z4
(3.64)

One can certainly make many other choices (all equivalent in the above sense, as long as

we stay in AdS5).

It is instructive to look once again at the equations of motion for the solution (3.62):

z =
√

2E1 =
√

2eu1+u2, y± = v±/z = E−1±2, i.e. y+ = e−2u2 , y− = e−2u1 and r = z−1 =
√

2y+y− =
√

2e−u1−u2. From the two terms on the l.h.s. of the equation

∂1(z
2∂1y

±) + ∂2(z
2∂2y

±) = 0 (3.65)

only one survives for each component of y, because, say, ∂2y
− = 0. Further, ∂1y

− = −2y−,

then multiplication by z2 (division by r2) converts y− into 1/y+, which is finally annihilated

by the action of the second ∂1.

3.5 More quadrilateral solutions: another kind of deformation and a hidden

symmetry

Since the only essential property of quadrilaterals that allowed (3.9) to be an exact solution

was (~ka−~ka−1)(~ka−~ka+1) = 0, it is clear that a further generalization is possible: the vectors
~k1,2,3,4 can form diagonals of any rectangular, not necessarily a square, figure 16. One can

check, that this is indeed a solution by a straightforward repetition of the derivation in

section 3: some coefficients at present depend on the angle between ~k1 and ~k2, which are

now not orthogonal, but these angles drop out of the final relation (3.27). What makes

this deformation interesting is that the change of vectors ~ka is not a linear transformation

in the space of variables (z,v), thus SO(4, 2) invariance is not sufficient to explain their

existence. Also, the existence of deformed solutions supports the belief that simple solutions

with n > 4 can exist: rectangular (rather than square) quadruples of ~k-vectors naturally

arise in degenerations of regular polygons.

Let us summarize the role of symmetries in the space of solutions (3.9) with n = 4:

Lorentz symmetry SO(3, 1) changes external momenta pa and the shape of the non-

planar skew quadrilateral in target space. The only invariants are light-likeness of the sides
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φ

~k1

~k2
~k3

~k4

Figure 16: Alternative choice of ~k-vectors on the u-plane, which differs from (14) but also provides

a solution (3.9) with the same boundary conditions to the σ-model equations of motion. The ~k-

vectors lie along diagonals of a rectangular and all have the same length, ~k2
a

= L = 2.

and the lengths
√

s and
√

t of the diagonals. The shape of the projection on the (y1, y2)

plane can be changed from kite or even more generic configurations to a rhombus. This

can be considered as a change of coefficients va at fixed za.

Conformal symmetry SO(4, 2) allows to make linear transformations of both za and

va parameters.

None of these target-space symmetries allows to change the vectors ~ka. However, at

least for n = 4 such a change is possible: all rectangular configurations of four ~ka provide

solutions. This can be considered as a certain rescaling (u1, u2) → (αu1, βu2), which does

not look like an obvious symmetry of the system.

4. Regularized minimal action

After regularizing the action in the way proposed in [1], one has to evaluate an integral of

the form

∫

Lǫ zǫd2u (4.1)

where Lǫ is a certain modification of either the σ-model or the Nambu-Goto action. An

attractive feature of this formula is that the finite contribution comes from the second-order

term in the expansion in powers of ǫ, so that it has a chance to acquire a biliner form,

which is needed to reproduce the double contour integral formula (1.9). For the same

reason, however, different formulations of the minimal area problem, while equivalent for

ǫ = 0, will not necessarily lead to the same answer for ǫ-finite terms in (4.1). In this section

we examine the dependence of (4.1) on the choice of za and minimize it with respect to

them.

4.1 A puzzle

An apparent problem with equation (4.1), arising already in the case of n = 4, is the

possibility to choose all za = 1, which makes the answer fully independent of external

momenta. To be more precise, the prescription of [1] just to make the only replacement

r → r
√

1 + ǫ/2 in the solution of equations of motion at zero ǫ and insert it back into the
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action (4.1), implies the substitution

∫

(∂r)2 + (∂y)2

r2+ǫ
d2u −→ 1

(1 + ǫ/2)ǫ/2

∫

(1 + ǫ/2)(∂r)2 + (∂y)2

(1 + ǫ/2)r2

d2u

rǫ

=
1

(1 + ǫ/2)ǫ/2

∫ (

(∂r)2

r2
+

1

1 + ǫ/2

(

L − (∂r)2

r2

))

d2u

rǫ

=
1

(1 + ǫ/2)1+ǫ/2

∫
(

L +
ǫ

2

(∂z)2

z2

)

zǫd2u (4.2)

where (∂y)2 is expressed through r and its derivatives from L = (∂r)2+(∂y)2

r2 = 2. The

factor (1 + ǫ/2)−(1+ǫ/2) = 1− ǫ
2 + O(ǫ3). Under naive application of the prescription of [1],

expression (4.2) is a concrete realization of (4.1), and it suffers from the same problem: it

depends only on z and becomes trivial (independent of external momenta) with an allowed

choice of all za equal. Note that the same argument does not work, at least in such a simple

form, for the Nambu-Goto action, because the y-variables do not disappear from the final

expression above.

4.2 Equations of motion

We forget for a while the prescription (4.2) and start directly from the deformed σ-model

action,

∫

(∂r)2 + (∂y)2

r2+ǫ
d2u (4.3)

We keep the notation L and z for the old quantities, L = ((∂r)2 + (∂y)2)/r2 and z = r−1,

while the new ǫ-dependent quantities will be marked by tildes: L̃ = ((∂r)2 + (∂y)2)/r2+ǫ

and z̃ = r−1−ǫ.

The equations of motion now read

∂

(

∂r

r2+ǫ

)

+
(2 + ǫ)

2

L

r1+ǫ
= 0,

∂

(

∂y

r2+ǫ

)

= 0 (4.4)

or, in terms of v = y/r,

∆z̃ = (1 + ǫ)
(

1 +
ǫ

2

)

z̃L,

∂
(

(1 + ǫ)z̃∂v − v∂z̃
)

= 0,

(1 + ǫ)2z̃2L =

{

(∂z̃)2 +
(

(1 + ǫ)z̃∂v − v∂z̃
)2

}

(4.5)

In contrast to the case of ǫ = 0, the mixing term in the second equation now survives,

and the equation for v does not look like the first equation for z̃. To avoid confusion, we

emphasize that in the above equations L = L̃ǫ=0.
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4.3 ǫ-deformed one-cusp solution of [18, 1, 12]

This solution is a direct generalization of (3.62). It possesses an immediate generalization

to (3.64), but not to the generic one-cusp limit.

If the only non-vanishing components of z and v are z1 and v±±2, then one can write

z = z1E1,

v± = v±±2E
γ
±2 (4.6)

where γ is some ǫ-dependent power, which still needs to be determined. The crucial problem

with the generic single-cusp limit is that, for ǫ 6= 0, one can not safely add the term v1E
γ
1

to v: with the value of γ required, it then contributes an undesired term E1+1+1+1 to the

equations. Therefore, we consider restricted ansatz (4.6) without reliable justification (no

symmetry transformation is immediately available at ǫ 6= 0 to bring any one-cusp limit to

this form).

Substituting (4.6) into (4.5) one obtains

(1 + ǫ)2k2
1(z1E1)

1+ǫ = (1+ǫ)(1+ǫ/2)L(z1E1)
1+ǫ,

(

γ~k2 + (1 + ǫ)~k1

)(

γ~k2 − ~k1

)

v+
2 Eγ

2 E1+ǫ
1 = 0,

(

− γ~k2 + (1 + ǫ)~k1

)(

− γ~k2 − ~k1

)

v−−2E
γ
−2E

1+ǫ
1 = 0,

(1+ǫ)2(z1E1)
2(1+ǫ)

(

− L+~k2
1+

(

γ~k2−~k1

)

v+
2

(

− γ~k2−~k1

)

v−−2

)

= 0 (4.7)

Given ~k2
1 = ~k2

2 = 2 and ~k1
~k2 = 0, these equations imply

L = 2
1 + ǫ

1 + ǫ/2
,

γ2 = 1 + ǫ,

L = 2 + 2(1 − γ2)v+
2 v−2 = 2 − ǫv+

2 v−2 (4.8)

or

v+
2 v−2 =

2

ǫ

(

1 − 1 + ǫ

1 + ǫ/2

)

= − 1

1 + ǫ/2
(4.9)

We repeat that this nice exact solution is a deformation of a very special type of a cusp

solution at ǫ = 0 — with v growing slower than z, v1 = 0 at z1 6= 0, and it is hard to extract

any information from it, which can be justly used in application to solution from more

general classes. As we saw, the prescription r → r
√

1 + ǫ/2 or rather v → v/
√

1 + ǫ/2,

while successfully applied in [1], cannot work equally well for all 4d-equivalent solutions

with different sets of {za}.

4.4 Alternative one-cusp solution

If one considers the generic one-cusp limit with v growing at the same rate as z, then the ex-

ponential form of asymptotics (3.9) is no longer true, and this once again demonstrates that
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the equivalence between different solutions is violated as a result of the ǫ-regularization.

This change of asymptotical behavior is a characteristic feature of Whitham deformations:

when equations are infinitesimally deformed, the change of solutions is not quite infinites-

imal — it is at any given value of the arguments ~u, but for a given ǫ and sufficiently large
~k~u the deformation can be as big as one wishes, the asymptotics is changed, or, in other

words, the large ~k~u and small ǫ limits do not commute.

To be concrete, consider the one-cusp limit Eb → ∞ with all non-vanishing coefficients

zb and vb. Before ǫ-regularization solution (3.9) in this limit becomes simply

z = zbEb + O(Eb,b±1),

v = vbEb + O(Eb,b±1) (4.10)

Let us simply neglect all O(Eb,b±1) terms, i.e. demand that zb and vb are the only non-

vanishing coefficients. Then

z∂v − v∂z = 0 (4.11)

and let us look for a solution to ǫ-deformed equations (4.5) with exactly the same prop-

erty (4.11). This is not going to be a generic solution, but still it provides some useful

information.

Since (4.11) is nothing but

(1 + ǫ)z̃∂v − v∂z̃ = 0, (4.12)

this restriction drastically simplifies (4.5) and reduces it to

∆z̃ = (1 + ǫ)(1 + ǫ/2)z̃L,

(∂z̃)2 = (1 + ǫ)2z̃2L (4.13)

It follows that

z̃∆z̃ =
1 + ǫ/2

1 + ǫ
(∂z̃)2 (4.14)

or

∂(∂ log z) = σ(∂ log z)2 (4.15)

with σ = −ǫ/2 (there would be an additional factor of (1 + ǫ)−1 in σ if (4.15) was written

in terms of z̃). This equation is easily converted into the Laplace equation

∆z−1/σ = 0 (4.16)

with the real part of any complex analytic function as generic solution. Since we are

interested in a solution which behaves as log z = ~k~u + O(σ) as σ → 0, one can easily

solve (4.15) iteratively and obtain

z = zbEb = zb
1

(1 − σ~kb~u)1/σ
(4.17)
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The corresponding L is no longer a constant at σ 6= 0:

L =
~k2

b

(1 − σ~kb~u)2
, ~k2 = 2 (4.18)

Of course, for a given ~u, Eb = (1−σ~kb~u)−1/σ → Eb = e
~kb~u as σ → 0, but at given σ 6= 0 the

asymptotic behavior at ~kb~u → ∞ is completely different: Eb grows/falls faster and reaches

infinity/zero at finite values of ~kb~u = ±σ−1. Such a drastic change of the asymptotic

behavior is a well-known phenomenon in Whitham theory. As a side remark, note that for

infrared regularization ǫ should be negative and σ = −ǫ/2 positive.

Unfortunately, this alternative one-cusp solution has the same drawbacks as the pre-

vious one: it does not provide us with a complete polygon solution. Indeed, one may try

now to substitute (3.9) at ǫ 6= 0 with E in place of all E. However, such a substitution

does not provide an exact solution to equations (4.5). Instead

z∂v − v∂z =
∑

a,b

kbPabEaE ′
b,

∂(z∂v − v∂z) = σ(1 + σ)
∑

a,b

Pab

(

(~ka − ~kb)~u
)(

2 − σ(~ka + ~kb)~u
)

(1 − σ~ka~u)2+1/σ(1 − σ~kb~u)2+1/σ
(4.19)

Moreover, L then turns into

L =

∑

a,b zazb(E ′′
aEb + EaE ′′

b ) + ǫ~ka
~kbE ′

aE ′
b

(1 + ǫ
2)

∑

a,b zazbEaEb
(4.20)

and is still independent of the external momenta pa.

4.5 The σ-model action

We now return to the area integral (4.2) for the solution (3.9) with n = 4 and then consider

the analogous integral for the deformation of the Nambu-Goto action a la [1].

In order to calculate the regularized σ-model action (4.2), one may use the formula

Rǫ ≡ 1

(1 + ǫ/2)1+ǫ/2

∫ (

L +
ǫ

2

(∂z)2

z2

)

zǫd2u

=
1

(1 + ǫ/2)1+ǫ/2



2 − 1

2(1 − ǫ)

∑

a,b

(~ka
~kb)zazb

∂2

∂za∂zb





∫

zǫd2u (4.21)

derived in appendix A. In [1] the same quantity was parameterized by two functions I1 and

I2

Rǫ = 2

∫

zǫ(1 + ǫI1 + ǫ2I2 + . . .)d2u (4.22)

According to (4.21), integrals with I1 and I2 will be immediately known (note that they

themselves depend on ǫ!), once one evaluates

J {za} =

∫

zǫd2u (4.23)
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This integral is calculated in appendix A (the calculation generalizes the calculation of [1,

appendix B] to arbitrary values of za). The answer is (see appendix A for details)

Rǫ = Kǫ

{

1 +
ǫ

4
log(z1z2z3z4) +

ǫ2

8
log(z1z3) log(z2z4)

}

(4.24)

with

Kǫ = K̃ǫ

(

1 +
ǫ

2
+

ǫ2

2

)

=
8

ǫ2| sin φ|

(

1 + ǫ2

(

1

4
− π2

12

))

(4.25)

where φ is the angle between the vectors ~k1 and ~k2 (we consider here the general case of a

rectangle). Eq. (4.24) is our final formula for the regularized ”minimal area” for n = 4 in

the σ-model approach. Taking in addition into account the constraint (3.27), one obtains

a non-trivial function of the kinematical variables s, t and either one of the products z1z3

and z2z4.

For the Alday-Maldacena choice z1 = z3 = 1 − b and z2 = z4 = 1 + b and φ = π
2 one

obtains from (4.24):

RAM
ǫ =

1

2
Kǫ

{

(1 − b)ǫ + (1 + b)ǫ − ǫ2

2

(

log
1 − b

1 + b

)2
}

(4.26)

According to [1] this expression should be multiplied by

√
λDcD

2πaǫ
=

√

λµ2ǫ(2π)ǫ
√

1 + ǫ

2πaǫ

√

1 − π2ǫ2

12

(4.27)

to give

Areaǫ = 21+2ǫ K̃ǫ

πǫ2

{
√

λµ2ǫ

(−s)ǫ
+

√

λµ2ǫ

(−t)ǫ
− ǫ2

8

(

log
s

t

)2
}

(4.28)

where

K̃ǫ = 1 +
ǫ

2
(1 − log 2) +

ǫ2

8

(

1 − π2

3
− 2 log 2 + (log 2)2

)

(4.29)

Note that our normalization of z contains an extra factor of 4 as compared to [1] (the sum

of four exponents is 4 times a product of two cosines) and this contributes a factor 4ǫ in

the answer. An extra factor of 2 is due to our choice of the constant L = 2, instead of the

L = 1 of [1].

Thus, (4.24) is in full agreement with [1], but one can use it equally well for other

choices of {za}, and the answer obviously depends on this choice. Even more striking, it

strongly depends on the angle φ between the vectors ~k1 and ~k2, which, along with {za},
are the moduli in the solution space.
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4.6 The Alday-Maldacena solution as a minimum in the moduli space

Since solutions with different {za} are not equivalent, the regularized action depends on

these parameters. In such a case, one should naturally look for a new extremum: the

minimum of (4.24) in the moduli space of solutions. Since the moduli space is the hyper-

surface (3.27)

z1z3s + z2z4t = 1 (4.30)

in the space of za-variables, we should look for a minimum of (4.24) with respect to za

under the constraint (4.30). This gives

1

ǫz1

(

1 +
ǫ

2
log(z2z4)

)

= λz3s,

1

ǫz2

(

1 +
ǫ

2
log(z1z3)

)

= λz4t,

1

ǫz3

(

1 +
ǫ

2
log(z2z4)

)

= λz1s,

1

ǫz4

(

1 +
ǫ

2
log(z1z3)

)

= λz2t, (4.31)

where λ is the Lagrange multiplier. A possible solution of this system is:

z1 = z3 =
1√
2s

(

1 − ǫ

8
log

s

t
+ O(ǫ2)

)

,

z2 = z4 =
1√
2t

(

1 +
ǫ

8
log

s

t
+ O(ǫ2)

)

(4.32)

i.e. we obtain exactly the Alday-Maldacena choice (3.35) for za, with corrections of order

ǫ. The latter could lead to a different finite term in (4.24), however they exactly cancel

each other, since as one may check

ǫ

4
log(z1z2z3z4) = − ǫ

4
log(4st) + O(ǫ3) (4.33)

Of course, (4.32) is not the generic solution of (4.31). In fact, from (4.24) it follows

that the ǫ-regularization did not fully break the non-Lorentz part of SO(4, 2): the answer

depends on the products z1z3 and z2z4 and is invariant under rescalings z1 → αz1, z3 →
z3/α and z2 → βz1, z4 → z4/β. However, exactly because (4.24) depends only on the two

products, the other solutions, obtained by such rescalings, do not affect the vanishing of

the correction in (4.33).

The regularized action (4.24) depends also on the angle φ through a factor | sin φ|−1

in Kǫ, and minimum is obviously located at φ = π/2.

4.7 The Nambu-Goto action

Nambu-Goto (NG) action seems a more difficult issue to address in the approach of [1],

though it is much better from geometrical and, perhaps, even conceptual points of view [33].

First of all, as mentioned in section 3.1.3, the NG Lagrangian is not invariant under

T -duality. This means that one needs to borrow the beautiful formulation of the minimal
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area problem with boundary formed by external momenta from the σ-model formalism and

then use it as a starting point for NG calculations. In principle, this is not a drawback,

especially if one believes that the origin of the AdS/CFT (string/gauge) duality is in

Polyakov’s formalism with the Liouville field playing the role of the 5− th dimension: then

the σ-model-like formulation is the starting point in any case and the NG-like formulation

in terms of minimal areas is a derivable concept.

Second, not all the σ-model solutions (3.9) necessarily satisfy the Nambu-Goto equa-

tions of motion (Alday-Maldacena solution does). Description of moduli space of Nambu-

Goto solutions is an open problem even for n = 4.

Third, if this moduli space is also large, as in the σ-model case, further calculations can

be more difficult. For a given solution one can not immediately get rid of the y-fields when

the action is evaluated with the help of the Alday-Maldacena prescription (to substitute r

by r
√

1 + ǫ/2), as we did in (4.2): some direct calculation involving all the fields z and v

should be performed. It is an intriguing question, if the result will be the same as in the

σ-model case, and — even if not — if the Alday-Maldacena solution is still a minimum in

the moduli space.

5. Conclusion and prospects

To summarize, the seemingly ad hoc choice of za-parameter values made in [1] indeed cor-

responds to a minimum of the regularized area in the moduli space of all possible solutions

of the AdS σ-model with given boundary conditions and the one-to-one correspondence

between minimal surfaces and boundary conditions is partly restored after regularization.

Of course, whether or not the minimal surface is regularization independent remains an

open question. In general, in order to find the minimum one needs to know the area as a

function on the moduli space, i.e. analysis of some particular solution is not sufficient. In

practice, however, it appeared sufficient to restrict consideration to the SO(4, 2)-orbit of

a particular solution, despite the fact that this symmetry does not act transitively on the

entire moduli space (for instance, it does not change the angle φ between the ~k-vectors).

Since the SO(4, 2) symmetry is broken by regularization, the za-dependence of the regular-

ized action is not automatically given by symmetry arguments and should be determined

by straightforward calculation. This implies that to address the n > 4 problem one will

need to construct the full family of solutions and evaluate their regularized action.

Modulo the above comments, the reasoning of [1] reduces in the framework of the

AdS/CFT correspondence the problem of n-point amplitudes of N = 4 SYM at strong

coupling to a couple of well-defined problems in the field of integrable systems:

(i) Find solutions of the 2d integrable SO(4, 2) sigma-model allowing for growing asymp-

totics on the world sheet, and

(ii) Find their Whitham deformations, induced by an ǫ-regularization, which breaks the

integrability of the σ-model.

The regularized minimal area is then defined by a minimum of some still-to-be-

determined function on the moduli space of solutions.
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Using the results of [9] one may write the BDS conjectured formula, given in the

introduction, in terms of the regularized Polyakov’s [22] double contour integral (1.9) over

the auxiliary polygon Π in momentum space, formed by the momenta of the scattering

process under study, i.e.

Amplitude in perturbative N = 4 SYM ∼ exp

(

γ(λ)

4

∮

Π

∮

Π

dyµdy′µ
(y − y′)2+ǫ

)

, (5.1)

Then the AdS/CFT duality in the sector of n-point amplitudes, may equivalently be stated

in purely geometrical terms, namely: why does this integral coincide with the area of the

minimal surface Σ defined by above Whitham-deformed σ-model solutions:

∮

Π

∮

Π

dyµdy′µ
(y − y′)2+ǫ

= Areaǫ(Σ), Π = ∂Σ (5.2)

This was explicitly verified in [1] and also here for n = 4. The exact relation between

integrable structures on the two sides of this formula [25, 43, 44] remains to be understood.

We emphasize that the result of [1] is entirely based on the deviations from ordinary inte-

grability. It suggests the crucial role of a very different — Whitham – integrability [36, 37],

which did not yet attract much attention in the studies of the AdS/CFT correspondence.

A. Evaluation of the regularized area

In this appendix, we explain how to calculate the regularized area in the σ-model case (4.2).

The calculation is a straightforward extension of the calculation in [1] to the case of generic

za.

For z =
∑

a zae
~ka~u we have:

(

∂

∂~u
−

∑

a

~kaza
∂

∂za

)

z = 0 =⇒ (∂z)2

z2
=

∑

a,b

(~ka
~kb)

zazb

z2

∂z

∂za

∂z

∂zb
(A.1)

Next, from

∂2z

∂za∂zb
= 0 =⇒ ∂2zǫ

∂za∂zb
= ǫ(ǫ − 1)

zǫ

z2

∂z

∂za

∂z

∂zb
(A.2)

so that

(∂z)2

z2
zǫ = − 1

ǫ(1 − ǫ)

∑

a,b

(~ka
~kb)zazb

∂2zǫ

∂za∂zb
(A.3)

Thus substituting (3.9) into (4.2) we obtain:

Rǫ ≡ 1

(1 + ǫ/2)1+ǫ/2

∫ (

L +
ǫ

2

(∂z)2

z2

)

zǫd2u

=
1

(1 + ǫ/2)1+ǫ/2



2 − 1

2(1 − ǫ)

∑

a,b

(~ka
~kb)zazb

∂2

∂za∂zb





∫

zǫd2u (A.4)
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In [1] the same quantity was parameterized by two functions I1 and I2:

Rǫ = 2

∫

zǫ(1 + ǫI1 + ǫ2I2 + . . .)d2u (A.5)

and looking at the l.h.s. of (A.4) with L = 2 and (1 + ǫ/2)−(1+ǫ/2) = 1 − ǫ/2 + O(ǫ3), one

immediately sees that

2I2 + I1 = −1

2
(A.6)

According to (A.4) integrals with I1 and I2 will be immediately known (note that they

themselves depend on ǫ!), if one evaluates

Jn{za} =

∫

zǫd2u (A.7)

If n = 4 and ~k3 = −~k1 and ~k4 = −~k2, as is the case for our solutions, then we can use

ũ1 = ~k1~u and ũ2 = ~k2~u as new coordinates on the world sheet, and they can be further

shifted by 1
2 log(z1/z3) and 1

2 log(z/2/z4) respectively in order to give:

J4{za} =
2ǫ

|~k1 × ~k2|

∫

(√
z1z3 cosh ũ1 +

√
z2z4 cosh ũ2

)ǫ
d2ũ

=
21+ǫ

|~k1 × ~k2|

∫

{(√
z1z3 +

√
z2z4

)

cosh û1 cosh û2

+
(√

z1z3 −
√

z2z4

)

sinh û1 sinh û2

}ǫ
d2û (A.8)

In the second line the variables are rotated once again, û1 = ũ1+ũ2

2 , û2 = ũ1−ũ2

2 , and the

resulting integral can be evaluated, say, by expanding in powers of the second item, as was

done in [1]:
∫

(

A cosh û1 cosh û2 + B sinh û1 sinh û2

)ǫ
d2û

=
Aǫ

Γ(−ǫ)

∞
∑

k=0

Γ(2k − ǫ)

(2k)!

(

−B

A

)2k (∫

tanh2kû coshǫû dû

)2

(A.9)

The last integral converges for ǫ < 0 and is given by a B-function formula with ξ = tanh û:
∫

tanh2kû coshǫû dû =

∫ 1

0
(ξ2)k−1/2(1 − ξ2)−1−ǫ/2d(ξ2) =

Γ
(

k + 1
2

)

Γ
(

− ǫ
2

)

Γ
(

k + 1−ǫ
2

) (A.10)

It remains to substitute (A.10) into (A.9) and make use of the doubling formula

Γ(2k − ǫ) =
22k−ǫ−1

√
π

Γ
(

k − ǫ

2

)

Γ

(

k +
1 − ǫ

2

)

(A.11)

to obtain [1]:

(A.9) =
AǫΓ2(− ǫ

2)

21+ǫΓ(−ǫ)

∞
∑

k=0

Γ
(

k + 1
2

)

Γ
(

k − ǫ
2

)

k! Γ
(

k + 1−ǫ
2

)

(

−B

A

)2k

=
πAǫΓ2

(

− ǫ
2

)

Γ2
(

1−ǫ
2

) 2F1

(

1

2
,− ǫ

2
;
1 − ǫ

2
;

(

B

A

)2
)

(A.12)
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At the last step one applies doubling to Γ(−ǫ) and includes a factor
Γ( 1

2
)Γ(− ǫ

2
)

Γ( 1−ǫ
2

)
from the

definition of the F -function.

Now we return to (A.4) and substitute the evaluated expression (A.12) for J4. The

differential equation for the hypergeometric function 2F1 can be used to evaluate the

derivatives. Alternatively, one can expand (A.12) and keep the first relevant powers of ǫ

already at this stage, as was done in [1] with the help of the asymptotic formula

2F1

(

1

2
,− ǫ

2
;
1 − ǫ

2
; C

)

= 1 +
ǫ

2
log(1 − C) +

ǫ2

2
log(1 −

√
C) log(1 +

√
C) + O(ǫ3)(A.13)

so that
(

1 +
ǫ

2
log(A2 − B2) +

ǫ2

2
log(A − B) log(A + B) + O(ǫ3)

)

= Kǫ

(

1 +
ǫ

4
log(16z1z2z3z4) +

ǫ2

8
log(4z1z3) log(4z2z4) + O(ǫ3)

)

= 2ǫKǫ

(

1 +
ǫ

4
log(z1z2z3z4) +

ǫ2

8
log(z1z3) log(z2z4) + O(ǫ3)

)

(A.14)

= 2ǫKǫ

{

1 +
ǫ

4
log(z1z2z3z4) +

ǫ2

32

(

log(z1z2z3z4)
)2

− ǫ2

32

(

log
z1z3

z2z4

)2
+ O(ǫ3)

}

where

Kǫ =
πΓ2

(

− ǫ
2

)

Γ2
(

1−ǫ
2

) =
41−ǫ

ǫ2

(

Γ2(1 − ǫ
2)

Γ(1 − ǫ)

)2

=
41−ǫ

ǫ2

(

1 +
ǫ2

2

[

(

Γ′(1)
)2 − Γ′′(1)

]

+ O(ǫ3)

)

=
41−ǫ(1 − π2ǫ2

12 )

ǫ2
(A.15)

because Γ(1 + z) = 1 − γz +
(

π2

12 + γ2

2

)

z2 + . . .

If the angle between vectors ~k1 and ~k2 is φ, then we obtain, up to the terms of order

O(ǫ)

Rǫ = K̃ǫ

(

1− 1

4(1−ǫ)

∑

a,b

(~ka
~kb)zazb

∂2

∂za∂zb

)(

1+
ǫ

4
log(z1z2z3z4)+

ǫ2

8
log(z1z3) log(z2z4)

)

(A.16)

with

K̃ǫ =
(

1 − ǫ

2

) 21+ǫ

2| sin φ| · 2
ǫKǫ · 2 =

8
(

1 − ǫ
2 − π2ǫ2

12

)

ǫ2| sin φ| (A.17)

where the last factor 2 comes from L = 2.

The action of the differential operator on the first logarithmic term is simple, since

this logarithm is just a sum
∑

a log za, only four terms with a = b and ~k2
a = 2 contribute:

∑

a,b

(~ka
~kb)zazb

∂2

∂za∂zb
log(z1z2z3z4) = −2 · (1 + 1 + 1 + 1) = −8 (A.18)
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The action on the second logarithmic term is more interesting. For the same reason

∂2/∂z1∂z3 and ∂2/∂z2∂z4 annihilate this term, while the four operators ∂2/∂za∂za+1 are

multiplied by (~ka
~ka+1) = −2(−)a cos φ so that they do not contribute at all when ~ka are

directed along diagonals of a square and cancel among each other even if φ 6= π/2. Keeping

this in mind we obtain:

∑

a,b

(~ka
~kb)zazb

∂2

∂za∂zb
log(z1z3) log(z2z4)

= 2(−1 − 1)
(

log(z2z4) + log(z1z3)
)

+ 4cos φ
(

1 − 1 + 1 − 1
)

= −4 log(z1z2z3z4) (A.19)

Therefore (A.16) becomes

Rǫ = K̃ǫ

{(

1 +
ǫ

4
log(z1z2z3z4)+

ǫ2

8
log(z1z3) log(z2z4)

)

+
8ǫ

16(1 − ǫ)
+

4ǫ2

32
log(z1z2z3z4)

}

= Kǫ

{

1 +
ǫ

4
log(z1z2z3z4) +

ǫ2

8
log(z1z3) log(z2z4)

}

(A.20)

with

Kǫ = K̃ǫ

(

1 +
ǫ

2
+

ǫ2

2

)

=
8
(

1 − ǫ
2 − π2ǫ2

12

)

ǫ2 sinφ

(

1 +
ǫ

2
+

ǫ2

2

)

=
8

ǫ2| sin φ|

(

1 + ǫ2
(1

4
− π2

12

)

)

(A.21)

Equation (A.20) is our final formula for the regularized ”minimal area” for n = 4 in the

σ-model approach.

For the Alday-Maldacena choice of za variables z1 = z3 = 1 − b and z2 = z4 = 1 + b

and φ = π
2 we obtain from (A.20):

Rǫ = Kǫ

{

1 +
ǫ

2
log(1 − b2) +

ǫ2

4

[

(

log(1 − b)
)2

+
(

log(1 + b)
)2

−
(

log
1 − b

1 + b

)2
]}

=
1

2
Kǫ

{

(1 − b)ǫ + (1 + b)ǫ − ǫ2

2

(

log
1 − b

1 + b

)2
}

(A.22)

According to [1] this expression should be multiplied by

√
λDcD

2πaǫ
=

√

λµ2ǫ(2π)ǫ
√

1 + ǫ

2πaǫ
√

1 − π2ǫ2

12

(A.23)

to give:

Areaǫ = 21+2ǫ K̃ǫ

πǫ2

√

λµ2ǫ

{[

2π(1 − b)

23/2 a

]ǫ

+

[

2π(1 + b)

23/2 a

]ǫ

− ǫ2

2

(

log
1 − b

1 + b

)2
}

=

= 21+2ǫ K̃ǫ

πǫ2

{
√

λµ2ǫ

(−s)ǫ
+

√

λµ2ǫ

(−t)ǫ
− ǫ2

8

(

log
s

t

)2
}

(A.24)
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where

K̃ǫ = 2−ǫ/2

(

1 + ǫ2
(1

4
− π2

12

)

)

√

1 + ǫ

1 − π2ǫ2

12

= 1 +
ǫ

2
(1 − log 2) +

ǫ2

8

(

1 − π2

3
− 2 log 2 + (log 2)2

)

(A.25)
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E. Alvarez and C. Gómez, Geometric holography, the renormalization group and the

c-theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226];

L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on

perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022

[hep-th/9810126]; The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B

569 (2000) 451 [hep-th/9909047];

V. Balasubramanian and P. Kraus, Spacetime and the holographic renormalization group,

Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190];

– 47 –

http://jhep.sissa.it/stdsearch?paper=02%282005%29059
http://jhep.sissa.it/stdsearch?paper=02%282005%29059
http://arxiv.org/abs/hep-th/0411089
http://jhep.sissa.it/stdsearch?paper=07%282005%29002
http://arxiv.org/abs/hep-th/0502240
http://jhep.sissa.it/stdsearch?paper=03%282007%29045
http://arxiv.org/abs/hep-th/0606287
http://jhep.sissa.it/stdsearch?paper=03%282007%29094
http://arxiv.org/abs/hep-th/0611169
http://jhep.sissa.it/stdsearch?paper=07%282007%29015
http://jhep.sissa.it/stdsearch?paper=07%282007%29015
http://arxiv.org/abs/0705.2858
http://arxiv.org/abs/hep-th/9205110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C143%2C415
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB379%2C627
http://arxiv.org/abs/hep-th/9407018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB491%2C529
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB491%2C529
http://arxiv.org/abs/hep-th/9512161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB657%2C53
http://arxiv.org/abs/hep-th/0211245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C5889
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C5889
http://arxiv.org/abs/hep-th/0301136
http://arxiv.org/abs/hep-th/9809196
http://arxiv.org/abs/hep-th/9903087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB355%2C466
http://arxiv.org/abs/hep-th/9505035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB527%2C690
http://arxiv.org/abs/hep-th/9802007
http://arxiv.org/abs/hep-th/0011197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB442%2C152
http://arxiv.org/abs/hep-th/9806217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB541%2C441
http://arxiv.org/abs/hep-th/9807226
http://jhep.sissa.it/stdsearch?paper=12%281998%29022
http://arxiv.org/abs/hep-th/9810126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C451
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C451
http://arxiv.org/abs/hep-th/9909047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C3605
http://arxiv.org/abs/hep-th/9903190


J
H
E
P
1
1
(
2
0
0
7
)
0
2
1

D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of

D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194];

K. Skenderis and P.K. Townsend, Gravitational stability and renormalization-group flow,

Phys. Lett. B 468 (1999) 46 [hep-th/9909070];

O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with

scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134];

A.M. Polyakov, String theory and quark confinement, Nucl. Phys. 68 (Proc. Suppl.) (1998) 1

[hep-th/9711002];

J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP

08 (2000) 003 [hep-th/9912012];

E.P. Verlinde and H.L. Verlinde, RG-flow, gravity and the cosmological constant, JHEP 05

(2000) 034 [hep-th/9912018];

E.P. Verlinde, On RG-flow and the cosmological constant, Class. and Quant. Grav. 17 (2000)

1277 [hep-th/9912058];

J. Khoury and H.L. Verlinde, On open/closed string duality, Adv. Theor. Math. Phys. 3

(1999) 1893 [hep-th/0001056];

A. Mironov and A. Morozov, On renormalization group in abstract QFT, Phys. Lett. B 490

(2000) 173 [hep-th/0005280].

[39] J.B. Meusner, Memoire sur la Courbure des Surfaces, Mem. des Savans Etrangers 10 (1785)

477.

[40] R. Osserman, A survey of minimal surfaces, NY, Dover (1986); Minimal surfaces,

Springer-Verlag, Berlin (1997).

[41] Wolfram Math World, http://mathworld.wolfram.com/MinimalSurface.htm and references

there.

[42] D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys.

Lett. B 197 (1987) 129; String theory beyond the planck scale, Nucl. Phys. B 303 (1988) 407.

[43] T. Klose, T. McLoughlin, J.A. Minahan and K. Zarembo, World-sheet scattering in

AdS5 × S5 at two loops, JHEP 08 (2007) 051 [arXiv:0704.3891].

[44] A.V. Belitsky, V.M. Braun, A.S. Gorsky and G.P. Korchemsky, Integrability in QCD and

beyond, Int. J. Mod. Phys. A 19 (2004) 4715 [hep-th/0407232].

– 48 –

http://jhep.sissa.it/stdsearch?paper=07%282000%29038
http://arxiv.org/abs/hep-th/9906194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB468%2C46
http://arxiv.org/abs/hep-th/9909070
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C046008
http://arxiv.org/abs/hep-th/9909134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C68%2C1
http://arxiv.org/abs/hep-th/9711002
http://jhep.sissa.it/stdsearch?paper=08%282000%29003
http://jhep.sissa.it/stdsearch?paper=08%282000%29003
http://arxiv.org/abs/hep-th/9912012
http://jhep.sissa.it/stdsearch?paper=05%282000%29034
http://jhep.sissa.it/stdsearch?paper=05%282000%29034
http://arxiv.org/abs/hep-th/9912018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C1277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C1277
http://arxiv.org/abs/hep-th/9912058
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1893
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1893
http://arxiv.org/abs/hep-th/0001056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB490%2C173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB490%2C173
http://arxiv.org/abs/hep-th/0005280
http://mathworld.wolfram.com/MinimalSurface.htm
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB303%2C407
http://jhep.sissa.it/stdsearch?paper=08%282007%29051
http://arxiv.org/abs/0704.3891
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA19%2C4715
http://arxiv.org/abs/hep-th/0407232

